167 research outputs found

    PAC-Bayesian Majority Vote for Late Classifier Fusion

    Full text link
    A lot of attention has been devoted to multimedia indexing over the past few years. In the literature, we often consider two kinds of fusion schemes: The early fusion and the late fusion. In this paper we focus on late classifier fusion, where one combines the scores of each modality at the decision level. To tackle this problem, we investigate a recent and elegant well-founded quadratic program named MinCq coming from the Machine Learning PAC-Bayes theory. MinCq looks for the weighted combination, over a set of real-valued functions seen as voters, leading to the lowest misclassification rate, while making use of the voters' diversity. We provide evidence that this method is naturally adapted to late fusion procedure. We propose an extension of MinCq by adding an order- preserving pairwise loss for ranking, helping to improve Mean Averaged Precision measure. We confirm the good behavior of the MinCq-based fusion approaches with experiments on a real image benchmark.Comment: 7 pages, Research repor

    Similarity Learning for Provably Accurate Sparse Linear Classification

    Full text link
    In recent years, the crucial importance of metrics in machine learning algorithms has led to an increasing interest for optimizing distance and similarity functions. Most of the state of the art focus on learning Mahalanobis distances (requiring to fulfill a constraint of positive semi-definiteness) for use in a local k-NN algorithm. However, no theoretical link is established between the learned metrics and their performance in classification. In this paper, we make use of the formal framework of good similarities introduced by Balcan et al. to design an algorithm for learning a non PSD linear similarity optimized in a nonlinear feature space, which is then used to build a global linear classifier. We show that our approach has uniform stability and derive a generalization bound on the classification error. Experiments performed on various datasets confirm the effectiveness of our approach compared to state-of-the-art methods and provide evidence that (i) it is fast, (ii) robust to overfitting and (iii) produces very sparse classifiers.Comment: Appears in Proceedings of the 29th International Conference on Machine Learning (ICML 2012

    A Survey on Metric Learning for Feature Vectors and Structured Data

    Full text link
    The need for appropriate ways to measure the distance or similarity between data is ubiquitous in machine learning, pattern recognition and data mining, but handcrafting such good metrics for specific problems is generally difficult. This has led to the emergence of metric learning, which aims at automatically learning a metric from data and has attracted a lot of interest in machine learning and related fields for the past ten years. This survey paper proposes a systematic review of the metric learning literature, highlighting the pros and cons of each approach. We pay particular attention to Mahalanobis distance metric learning, a well-studied and successful framework, but additionally present a wide range of methods that have recently emerged as powerful alternatives, including nonlinear metric learning, similarity learning and local metric learning. Recent trends and extensions, such as semi-supervised metric learning, metric learning for histogram data and the derivation of generalization guarantees, are also covered. Finally, this survey addresses metric learning for structured data, in particular edit distance learning, and attempts to give an overview of the remaining challenges in metric learning for the years to come.Comment: Technical report, 59 pages. Changes in v2: fixed typos and improved presentation. Changes in v3: fixed typos. Changes in v4: fixed typos and new method

    A New PAC-Bayesian Perspective on Domain Adaptation

    Get PDF
    We study the issue of PAC-Bayesian domain adaptation: We want to learn, from a source domain, a majority vote model dedicated to a target one. Our theoretical contribution brings a new perspective by deriving an upper-bound on the target risk where the distributions' divergence---expressed as a ratio---controls the trade-off between a source error measure and the target voters' disagreement. Our bound suggests that one has to focus on regions where the source data is informative.From this result, we derive a PAC-Bayesian generalization bound, and specialize it to linear classifiers. Then, we infer a learning algorithmand perform experiments on real data.Comment: Published at ICML 201

    An Improvement to the Domain Adaptation Bound in a PAC-Bayesian context

    Full text link
    This paper provides a theoretical analysis of domain adaptation based on the PAC-Bayesian theory. We propose an improvement of the previous domain adaptation bound obtained by Germain et al. in two ways. We first give another generalization bound tighter and easier to interpret. Moreover, we provide a new analysis of the constant term appearing in the bound that can be of high interest for developing new algorithmic solutions.Comment: NIPS 2014 Workshop on Transfer and Multi-task learning: Theory Meets Practice, Dec 2014, Montr{\'e}al, Canad

    Learning Multipicity Tree Automata

    No full text
    International audienceIn this paper, we present a theoretical approach for the problem of learning multiplicity tree automata. These automata allows one to define functions which compute a number for each tree. They can be seen as a strict generalization of stochastic tree automata since they allow to define functions over any field K. A multiplicity automaton admits a support which is a non deterministic automaton. From a grammatical inference point of view, this paper presents a contribution which is original due to the combination of two important aspects. This is the first time, as far as we now, that a learning method focuses on non deterministic tree automata which computes functions over a field. The algorithm proposed in this paper stands in Angluin's exact model where a learner is allowed to use membership and equivalence queries. We show that this algorithm is polynomial in time in function of the size of the representation

    Joint Distribution Optimal Transportation for Domain Adaptation

    Full text link
    This paper deals with the unsupervised domain adaptation problem, where one wants to estimate a prediction function ff in a given target domain without any labeled sample by exploiting the knowledge available from a source domain where labels are known. Our work makes the following assumption: there exists a non-linear transformation between the joint feature/label space distributions of the two domain Ps\mathcal{P}_s and Pt\mathcal{P}_t. We propose a solution of this problem with optimal transport, that allows to recover an estimated target Ptf=(X,f(X))\mathcal{P}^f_t=(X,f(X)) by optimizing simultaneously the optimal coupling and ff. We show that our method corresponds to the minimization of a bound on the target error, and provide an efficient algorithmic solution, for which convergence is proved. The versatility of our approach, both in terms of class of hypothesis or loss functions is demonstrated with real world classification and regression problems, for which we reach or surpass state-of-the-art results.Comment: Accepted for publication at NIPS 201

    PAC-Bayes and Domain Adaptation

    Get PDF
    We provide two main contributions in PAC-Bayesian theory for domain adaptation where the objective is to learn, from a source distribution, a well-performing majority vote on a different, but related, target distribution. Firstly, we propose an improvement of the previous approach we proposed in Germain et al. (2013), which relies on a novel distribution pseudodistance based on a disagreement averaging, allowing us to derive a new tighter domain adaptation bound for the target risk. While this bound stands in the spirit of common domain adaptation works, we derive a second bound (introduced in Germain et al., 2016) that brings a new perspective on domain adaptation by deriving an upper bound on the target risk where the distributions' divergence-expressed as a ratio-controls the trade-off between a source error measure and the target voters' disagreement. We discuss and compare both results, from which we obtain PAC-Bayesian generalization bounds. Furthermore, from the PAC-Bayesian specialization to linear classifiers, we infer two learning algorithms, and we evaluate them on real data.Comment: Neurocomputing, Elsevier, 2019. arXiv admin note: substantial text overlap with arXiv:1503.0694

    PAC-Bayesian Learning and Domain Adaptation

    Full text link
    In machine learning, Domain Adaptation (DA) arises when the distribution gen- erating the test (target) data differs from the one generating the learning (source) data. It is well known that DA is an hard task even under strong assumptions, among which the covariate-shift where the source and target distributions diverge only in their marginals, i.e. they have the same labeling function. Another popular approach is to consider an hypothesis class that moves closer the two distributions while implying a low-error for both tasks. This is a VC-dim approach that restricts the complexity of an hypothesis class in order to get good generalization. Instead, we propose a PAC-Bayesian approach that seeks for suitable weights to be given to each hypothesis in order to build a majority vote. We prove a new DA bound in the PAC-Bayesian context. This leads us to design the first DA-PAC-Bayesian algorithm based on the minimization of the proposed bound. Doing so, we seek for a \rho-weighted majority vote that takes into account a trade-off between three quantities. The first two quantities being, as usual in the PAC-Bayesian approach, (a) the complexity of the majority vote (measured by a Kullback-Leibler divergence) and (b) its empirical risk (measured by the \rho-average errors on the source sample). The third quantity is (c) the capacity of the majority vote to distinguish some structural difference between the source and target samples.Comment: https://sites.google.com/site/multitradeoffs2012
    • …
    corecore